Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells.

نویسندگان

  • Junjie Xu
  • Jiwei Liu
  • Renchao Che
  • Chongyun Liang
  • Maosheng Cao
  • Yong Li
  • Zhengwang Liu
چکیده

The shape anisotropy of the nanostructured nanorattles is one of the key factors that affect their microwave absorption performance. In the present study, the microwave absorption performance of ellipsoidal Fe3O4@CuSiO3 nanorattles with different aspect ratios was investigated. Results demonstrated that the ellipsoidal nanorattles with the aspect ratio of 3-4 exhibited about 20% enhancement of microwave absorption intensity compared with spherical Fe3O4@CuSiO3. Generally, as the aspect ratio increased from 2.0 to 3.5, the microwave absorption peak was enhanced monotonously from -20 dB to -30 dB. It was found that the ellipsoidal nanorattles with larger aspect ratio exhibited higher coercivity and double resonance peaks of the real part of complex permittivity, resulting in the improvement of microwave absorption performance. Our research gives insights into the understanding of the anisotropic effect of nanorattles on microwave absorption performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Axial to Lateral Load ratio on the Buckling of Thin Orthotropic Cylindrical Shells

Buckling analysis of thin cylindrical shells is very important due to their production process.  Usually longitudinal and transversal stiffeners are used to increase the buckling stiffness. In this paper, considering a thin cylindrical shell with longitudinal and transversal ribs subjected to axial force and lateral pressure, the influence of different aspect of axial force to lateral pressure ...

متن کامل

Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst.

A simple approach was proposed to synthesize three types of ellipsoidal hollow nanostructures whose shells are assembled from anatase TiO(2) nanosheets (NSs) with exposed (001) facets. Among them, ellipsoid Fe(3)O(4)@TiO(2)-NS nanorattles can be readily generated as a magnetically separable photocatalyst with enhanced activity through in situ reduction of the α-Fe(2)O(3) core.

متن کامل

NUMERICAL MODELING OF THE COMBUSTION SYNTHESIS OF TiAl/Al2O3 COMPOSITE VIAMICROWAVE HEATING

Abstract: Microwave processing is one of the novel methods for combustion synthesis of intermetallic compounds andcomposites. This method brings about a lot of opportunities for processing of uniquely characterized materials. In thisstudy, the combustion synthesis of TiAl/Al2O3 composite via microwave heating has been investigated by thedevelopment of a heat transfer model including a microwave...

متن کامل

Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption.

A chemoselective route to induce Fe3O4@ZnO core-shell nanoparticles decorating carbon nanotubes to form MWCNT/Fe3O4@ZnO heterotrimers has been developed. Charges are redistributed in the heterotrimers through C-O-Zn, C-O-Fe and Fe-O-Zn bondings, giving rise to multiple electronic phases. The generated significant interfacial polarization and synergetic interaction between dielectric and magneti...

متن کامل

Enhanced Microwave Absorption Properties of Intrinsically Core/shell Structured La0.6Sr0.4MnO3Nanoparticles

The intrinsically core/shell structured La(0.6)Sr(0.4)MnO(3) nanoparticles with amorphous shells and ferromagnetic cores have been prepared. The magnetic, dielectric and microwave absorption properties are investigated in the frequency range from 1 to 12 GHz. An optimal reflection loss of -41.1 dB is reached at 8.2 GHz with a matching thickness of 2.2 mm, the bandwidth with a reflection loss le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 11  شماره 

صفحات  -

تاریخ انتشار 2014